Searchable abstracts of presentations at key conferences on calcified tissues

ba0003pp150 | Cell biology: osteoblasts and bone formation | ECTS2014

PRKG1: A novel regulator of human skeletal (mesenchymal) stem cell differentiation

Jafari Abbas , Siersbaek Majken , Dobbelstein Matthias , Kassen Moustapha

Protein kinases are an important class of regulatory elements and pharmacological targets for treatment of a number of diseases including cancer, heart and lung diseases. However, their role in regulation of the skeletal (mesenchymal) stem cell (MSC) functions and bone formation is not fully understood. Thus, we performed functional screening of human kinome, using three siRNAs for each of the ~700 known kinases represented in the human genome. Activity of alkaline phosphatase...

ba0005p146 | Cell biology: osteoblasts and bone formation | ECTS2016

Pharmacological activation of the non-canonical TGF-β signaling is a novel strategy to enhance bone formation

Jafari Abbas , Siersbaek Majken , Chen Li , Kassem Moustapha

Identifying novel approaches for enhancing osteoblast (OB) differentiation of human skeletal (mesenchymal) stem cells (hMSC) can lead to development of novel anabolic agents required for efficient bone formation. Transforming growth factor-βs (TGF-β1, 2, 3) are one of the most abundant growth factors in bone and play a key role in regulating bone remodeling. Canonical TGF-β signaling inhibits, whereas components of the non-canonical TGF-β signaling (e.g. Ak...

ba0001pp175 | Cell biology: osteoblasts and bone formation | ECTS2013

Identification of a small molecule kinase inhibitor that enhances osteoblast differentiation of human skeletal (mesenchymal) stem cells through regulation of TGFβ signaling

Siersbaek Majken Storm , Jafari Abbas , Zaher Walid , Chen Li , Kassem Moustapha

Identifying novel molecules that enhance human skeletal (mesenchymal) stem cells (hMSC) differentiation into osteoblastic bone forming cells (OB), may lead to development of new bone anabolic drugs. We have identified Kix, a small molecule kinase inhibitor that enhanced ex vivo OB differentiation and reduced apoptosis of hMSC. We found that Kix targeted undifferentiated hMSC populations and not their differentiated progeny. In addition, Kix increased in vivo ...